On Valuations, the Characteristic Polynomial, and Complex Subspace Arrangements

نویسندگان

  • Richard Ehrenborg
  • Margaret A. Readdy
چکیده

We present a new combinatorial method to determine the characteristic polynomial of any subspace arrangement that is defined over an infinite field, generalizing the work of Blass and Sagan. Our methods stem from the theory of valuations and Groemer's integral theorem. As a corollary of our main theorem, we obtain a result of Zaslavsky about the number of chambers of a real hyperplane arrangement. The examples we consider include a family of complex subspace arrangements, which we call the divisor Dowling arrangement, whose intersection lattice generalizes that of the Dowling lattice. We also determine the characteristic polynomial of interpolations between subarrangements of the divisor Dowling arrangement, generalizing the work of Jo zefiak and Sagan. 1998 Academic Press

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skeleton simplicial evaluation codes

For a subspace arrangement over a finite field we study the evaluation code defined on the arrangements set of points. The length of this code is given by the subspace arrangements characteristic polynomial. For coordinate subspace arrangements the dimension is bounded below by the face vector of the corresponding simplicial complex. The minimum distance is determined for coordinate subspace ar...

متن کامل

Edge Colored Hypergraphic Arrangements

A subspace arrangement defined by intersections of hyperplanes of the braid arrangement can be encoded by an edge colored hypergraph. It turns out that the characteristic polynomial of this type of subspace arrangement is given by a generalized chromatic polynomial of the associated edge colored hypergraph. The main result of this paper supplies a sufficient condition for the existence of non-t...

متن کامل

Subspace Arrangements of Curve Singularities and q-Analogs of the Alexander Polynomial

This paper introduces q-series for a curve singularity (C, 0) in the affine space (Cn, 0) via subspace arrangements. These q-series are certain multivariable generating functions whose coefficients are the characteristic polynomials of subspace arrangements associated with the singularity (C, 0) at various orders; the q is the variable in the characteristic polynomials of the subspace arrangeme...

متن کامل

Characteristic and Ehrhart Polynomials

Let A be a subspace arrangement and let (A; t) be the characteristic polynomial of its intersection lattice L(A). We show that if the subspaces in A are taken from L(Bn), where Bn is the type B Weyl arrangement, then (A; t) counts a certain set of lattice points. This is the only known combinatorial interpretation of this polynomial in the subspace case. One can use this result to study the par...

متن کامل

Algebraic Combinatorics of Graph Spectra , Subspace Arrangements and Tutte Polynomials by Christos A . Athanasiadis

The present thesis consists of three independent parts. In the first part we employ an elementary counting method to study the eigenvalues of the adjacency matrices of some special families of graphs. The main example is provided by the directed graph D(G), constructed by Propp on the vertex set of oriented spanning rooted trees of a given directed graph G. We describe the eigenvalues of D(G) i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998